Hexagonal graphene onion rings.

نویسندگان

  • Zheng Yan
  • Yuanyue Liu
  • Jian Lin
  • Zhiwei Peng
  • Gunuk Wang
  • Elvira Pembroke
  • Haiqing Zhou
  • Changsheng Xiang
  • Abdul-Rahman O Raji
  • Errol L G Samuel
  • Ting Yu
  • Boris I Yakobson
  • James M Tour
چکیده

Precise spatial control of materials is the key capability of engineering their optical, electronic, and mechanical properties. However, growth of graphene on Cu was revealed to be seed-induced two-dimensional (2D) growth, limiting the synthesis of complex graphene spatial structures. In this research, we report the growth of onion ring like three-dimensional (3D) graphene structures, which are comprised of concentric one-dimensional hexagonal graphene ribbon rings grown under 2D single-crystal monolayer graphene domains. The ring formation arises from the hydrogenation-induced edge nucleation and 3D growth of a new graphene layer on the edge and under the previous one, as supported by first principles calculations. This work reveals a new graphene-nucleation mechanism and could also offer impetus for the design of new 3D spatial structures of graphene or other 2D layered materials. Additionally, in this research, two special features of this new 3D graphene structure were demonstrated, including nanoribbon fabrication and potential use in lithium storage upon scaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene-like nanoribbons periodically embedded with four- and eight-membered rings

Embedding non-hexagonal rings into sp2-hybridized carbon networks is considered a promising strategy to enrich the family of low-dimensional graphenic structures. However, non-hexagonal rings are energetically unstable compared to the hexagonal counterparts, making it challenging to embed non-hexagonal rings into carbon-based nanostructures in a controllable manner. Here, we report an on-surfac...

متن کامل

Facile hydrothermal synthesis of CuFeO2 hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries.

Delafossite CuFeO2 hexagonal platelets/rings and graphene composites were synthesized by a low temperature hydrothermal method. The formation mechanism of CuFeO2 hexagonal platelets/rings follows the combined effects of both GO and NaOH. The obtained composites as anode materials display a good battery performance with high reversible capacity, good rate capability and cyclic stability.

متن کامل

Patterns of the Aharonov-Bohm oscillations in graphene nanorings

Using extensive tight-binding calculations, we investigate (including the spin) the Aharonov-Bohm (AB) effect in monolayer and bilayer trigonal and hexagonal graphene rings with zigzag boundary conditions. Unlike the previous literature, we demonstrate the universality of integer (hc/e) and half-integer (hc/2e) values for the period of the AB oscillations as a function of the magnetic flux, in ...

متن کامل

Fullerenes and Carbon Nanotubes Fullerene

A fullerene is any molecule composed entirely of carbon, in the form of a hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs, and they resemble the balls used in Association Football. Cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are similar in structure to graphite, which is composed of stacked graphene sheets of linked hexagonal rings; ...

متن کامل

A grossly warped nanographene and the consequences of multiple odd-membered-ring defects.

Graphite, the most stable form of elemental carbon, consists of pure carbon sheets stacked upon one another like reams of paper. Individual sheets, known as graphene, prefer planar geometries as a consequence of the hexagonal honeycomb-like arrangements of trigonal carbon atoms that comprise their two-dimensional networks. Defects in the form of non-hexagonal rings in such networks cause distor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 29  شماره 

صفحات  -

تاریخ انتشار 2013